Zero Boil-Off Tank Experiment (ZBOT) PI: Dr. Mohammad Kassemi, NCSER/GRC Co-I: Dr. David Chato, NASA GRC PS: David Plachta, NASA GRC PM: William Sheredy, NASA GRC Engineering Team: ZIN Technologies, Inc. #### Objective: - Develop a small-scale simulant-fluid (Perfluoro-n-pentane) experiment for both preliminary ground-based testing and subsequent ISS flight experiments in order to obtain valuable microgravity empirical data for a ZBO tank design and archival science data for model validation. - Build a science base for the future space storage tank engineering efforts by elucidating the roles of the various interacting transport and phase change phenomena that impact tank pressurization and pressure control in variable gravity through systematic 1g and microgravity scientific investigation. - Develop, validate, and verify variable gravity two-phase CFD models for ventless ZBO storage tank pressure control that can be used to aid scale-up tank design. - Show the feasibility of ZBO pressure control scheme for microgravity and variable gravity applications by examining the effect of forced mixing of the bulk liquid on destratification and pressure reduction. #### Relevance/Impact: - Reduces launch mass and decreases risks through enabling design concepts for longterm storage of cryogenic fluids. - Cost effective and reliable cryogenic storage for both life support and propulsion systems satisfying the requirements for long term mission scenarios from Moon to Mars and beyond. #### **Development Approach:** - <u>Ground phase:</u> develop ground-based experiment and obtain 1-g data for tank pressurization and pressure control. - <u>Flight phase:</u> develop ISS experiment and obtain microgravity data for tank pressurization and pressure control. - Develop a state-of-the art two-phase CFD model for tank pressurization and pressure control. - Validate and Verify (V&V) the CFD model with microgravity and 1g data. - Use the validated CFD model and empirical correlations derived from the 1g and microgravity data for scale-up tank design. ## Glenn Research Center ZBOT in the MSG ## ISS Resource Requirements | 100 Recourse Requirements | | | | | | | | | |---|-------------------------------------|--|--|--|--|--|--|--| | Accommodation (carrier) | Microgravity Science Glovebox (MSG) | | | | | | | | | Upmass (kg)
(w/o packing factor) | 80 - 100 kg | | | | | | | | | Volume (m³)
(w/o packing factor) | 0.10 - 0.12 m ³ | | | | | | | | | Power (kw)
(peak) | 0.100 kW | | | | | | | | | Crew Time (hrs) (installation/operations) | 15 - 20 hrs. total | | | | | | | | | Launch/Increment | Increment 31/32 | | | | | | | | ### **Project Life Cycle Schedule** | Milestones | | RDR | PDR | CDR | VRR | Phase III Safety | FHA | Launch | Ops | Return | Final Report | |------------------|--|------|-------|------|--|------------------|------|---|---------|--------|--------------| | Actual/ Baseline | | 6/08 | 11/09 | 2/11 | 10/11 | 12/11 | 3/12 | 6/12 | 8-12/12 | TBD | 12/13 | | Documentation | Website: http://spaceflightsystems.grc.nasa.gov/
Advanced/ISSResearch/MSG/ZBOT/
eRoom: (R) Zero Boil-Off Tank Experiment | | | | SRD: Version 3.9; May 7, 2008
EDMP: FY09 (planned for baseline) | | | Project Plan: October, 09 (planned for baseline)
SEMP: ISS Research SEMP | | | | Revision Date: 9/25/09